@&=> An Optimum Allocation
Algorithm for

Multivariate Surveys

SRS Staff Report
Number SF&SRB-89 James Bethel

Januar y 1986

AN OPTINUM AL1LOCATION ALGORITHM FOR MULTIVARTATE SURVEYS. By James Bethel,
Statistical Research Division, Statistical Reporting Service, U.S. Department
of Agriculture, Washington, D.C., 20250. Staff Report No. SF¢SRB-89, '

ABSTRACT

Optimal sample allocation, when multivariate data are collected, is a diffi-
cult problem and can be time-consuming even on large computers. This paper
developes and presents a relatively simple algorithm which is readily pro-
grammable and which appears to work very efficiently, converging quickly even
on small computers. A complete description of the algorithm is given, along
with a proof of convergence, and a discussion of methods used by the author in
implementing the algorithm., PASCAL source code for a program written by the
author is provided.

Keywords: Convex programming, sample design, stratified sampling.

LA A A A I IR 2 22 242 222 2 A2 A A 22 T2 a3 S22 TSR 1 22272 2212

¢ This paper was prepared for limited distribution to the research *

* community outside the U.S. Department of Agriculture. d
SEEE06S0 0SRS5S ES0SLE808S0ESS0S0SEERESESESES02E02008¢RS8SE00SRECSS

CONTENTS

SUMMATY .cveeveveessosrsoosssonsansoensasnsssassonsons eess 114
Introductionc.c.cieieiverncsnencncsnvsaannrsnaconsoas 1
The Algordithm ,......00ieeneenancssovassesascnancsnnosnnne 2
Convergence of the Algorithmi0e0vevsvecsnnneaseccas S
Implementing the Algorithmcccnivvernnnacereeseees 13
Conclusion ,,..veevrenncasossocssrrressasnscssssasccasess 14
References ..c.uoeeeceesecesoacessocsansessnasocossssanense 15

ApDPendixX ,.ivieeereeeciotcoscnssssserctsassosanscaans eees 16

- iit -

SUMMARY

Optimum allocation is a useful, if not invaluable, tool in sample design.
If there is only one variable of interest, the problem is easily solved. When
more than one variable is being observed, there are no closed-form optimum
solutions and some form of iterative computer algorithm must be used. Such
programs are available but generally only on large computer systems (such as
Martin Marietta) which are somewhat expensive to use, especially when compared
with programs that run on small in-house computing equipment. Specifically,
this algorithm is recommended as an efficient program for the Statistical
Reporting Service to use in multivariate optimum sample allocation problems

using an in-house computer.

This paper documents a program developed by the author to solve such mul-
tivariate problems. The paper is written at a technical level and is not
intended for general dissemination. The algorithm on which it is based is
simpler and seems to be more efficient than others designed for this purpose.
In particular, the program runs well on a Zilog System 8000, a microcomputer
which is available to many statisticians in the Statistical Reporting Service.
The algorithm is simple enough that the program can be casily adapted to solv—
ing many different types of allocation problems. The author used the program
extensively in evaluating sample designs for the Integrated Survey Program
(ISP), the work which originally motivated the developement of the algorithm
(Bethel, 1985). The program has also been used for studying multiple frame
estimators and for allocations involving double-sampling regression estimators

(Williams, 1986).

In this report, the algorithm is described and shown to converge to the
optimum solution. The convergence is automatic, in the sense that the start-
ing values are picked by the algorithm and the convergence does not depend on
the values chosen., There are, however, certain parameters in the program
which are discussed with some informal motivations given for the valumes used
by the author. Finally, PASCAL source code is given for a program written by
the anthor to implement the algorithm,

AN OPTIMUN ALLOCATION ALGORITHN FOR NULTIVARIATE SURVEYS

James Bethel

INTRODUCTION

The problem of optimal sample allocation for multipurpose surveys can be
viewed more generally as a problem in convex programming and, as such, there
are many ways to obtain a numerical solution. Huddleston, Claypool and Hock-
ing (1970) have applied a nonlinear programming method devised by Hartley and
Hocking (1963) to this problem, and Kokan (1963) has discussed some standard
nonlinear programming techniques with respect to optimal lllécation. While
these and other, more general methods are available, most of them are diffi-
cult to program and computationally burdensome, and not all are guaranteed to
converge. In this paper, an algorithm is developed which is relatively simple

to program and which converges quickly, even on smell computers.

Consider the case of stratified random sampling. Suppose it is required

that the j—th variable, 1 { j { p, satisfy

- L
2 o2 1 1
var(y,) = 3 w, S (=— - =) (v,
Iogm b ey N T
Let
1 ifa, >1
n. i+~
i
O © otherwise.
Assume the cost function
L L ¢
C = Ec = 2 .
j=1 B "n i=1 X4

(Fixed costs are irrelevant since these do not affect the minimization prob-

lem.) Now the problem reduces to minimizing

C = C(x) (1)
subject to the constraints®
L
izlajixigl. 1<¢j<p (2)
where
2 Q2
o [sh) s |y e 3T

The discussion will be limited to this allocation model, since Kokan
(1963) shows how it can be adapted to cover virtually any sampling situation.
The algorithm is described in the next section. The proof of comvergence,
which is presented in the third section, is the main focus of this paper, but
it is not essential for the discussion of applications. PASCAL code for imple-
menting the algorithm is given in the Appendix.

THE ALGORITHNM

Consider this informal argument: For fixed values of k, the set

°i
Sk = [x: 2 Xi = k] (3)

forms a convex hyperboloid, while the set

®Jdeally, one would also want
-1
Ni £ x, <1, 1 <1 L.

An automatic method for incorporating this constraint into the
problem has not been developed, but the method of Cochran (1977),

p. 104, can easily be used.

F = (x: 8,'x (1, 1§ <p) (4)
forms a convex polygon below Sk. As k increases, Sk moves downward toward the
upper boundary of the feasible region F and the point where these sets meet is
the optimal solution to (1) and (2). This is depicted in Figure 1.

For any hyperplane
H={x: a'x =1}, (s

Kokan and Khan (1967) show that H and Sk are tangent (for some sunitable k) at
the point t, where

1/2 1/2
(c; a,) !/ (a {(c, a,))

i "4 i i=1 i i if L £ 0
t = (6)

i © otherwise.

A

Consider the a as defined by (2). Let H, =

j < (‘jl"jz"""jL) , j
{x: nj'x = 1) and suppose that tj = (tjl’th""'th)' is the point where Hj
and Sk are tangent, If tj e F, then, as Kokan and Khan (1967) show, tj is the

optimal solution to (1). Unfortunately, this is rarely the case.

Suppose that H = {x: a’x = 1) and t = t(H) is the point where, for some
suitable k, H is tangent to Sk. The cost C(t) can be written as & function of
the coefficients a

i:
L ¢y
C(t) = 3 o (7)
i=1 i
L L
1/2 1/2
= 3 ¢,/ [(c a,) / (a, 3 (c, a,))}
i=1 i i 74 i =1 i i
L L
i=1 i=1
2
L
1/2
= 3 (¢, a,)] .
[1=1 i

For convenience write

G(H) = C(t(H)) = C(¢). (8)

The algorithm begins by selecting one of the Hj as an initial value

H(l) = {x: a(l)'x = 1}. For example take

(1 _
H H, .

H(z) to satisfy

Now choose

(2)y _ (1) _ 1/2
G(H' “") maX, pc1 [E (c (Ba;”" + (1 B)nu)] (9)

In a sense, H(Z) is the convex combination of H(l) and H, which maximizes G.

To find H(s). repeat this process with H3’ replacing .gl with aiZ) and 8
with 2,, in formula (9).
In general choose H(n+1) to satisfy
(n+1), _ (n) _ 1/2
G(H) maxo.g;_(_1 [E (ci(Bai + (1 ﬂ)njni)] (10)

where jn = n+l (mod p). For the purpose of this discussion, one iteration will

consist of calculating H(l),ﬂ(z)....,ﬂ(p).

CONVERGENCE OF THE ALGORITHN

The algorithm defined by (10) has the property that it is guaranteed to
converge, regardless of the initial starting velue. (Notice that the ordering
of the Hj has not been specified in any way, so that the choice of H; for the

starting value was arbitrary.)

Suppose that x‘ satisfies

c(x") ¢ C(x) for all x ¢ F (11)

and let H‘ be the hyperplane that is tangent to S . 1t x‘- Kokan and Khan

C{x)
(1967) establish the existence and uniqueness of x . Let x(n) be the point
where H(n) and S () intersect. It will be shown that

x
1im x(n) = x..
n

The proof is based on three results. these are stated now, deferring proof

until after the presentation of the main result,

Theorem 1. Suppose that p ,p,,...,p, ¢ R", with pi # Py whenever 1 # j, and
that f: D = (x: =3 TPy 7 >0, 2 1 = 1}-> R is strictly concave., Then

f(z) is a maximum on D if

f(z) > f(z + a(p, - 2))

i

for all a ¢ [0,1] and for each j =1,2,...,k,

Theorem 2. For any set of the form H = {x: J aj.j'x e 1, ay >0, 32 a; = 1},

G(H) ¢ G(B).

-6 -

Theorem 3. There exist a, 2 0, with 3 a; =1, such that
3

'x = 1).

B - {x: § aj'j

From (10) it is apparent that the algorithm searches among hyperplanes of

the form (x: 3 a,a,’'x = 1}. Theorems 2 and 3 show that H has this form and,

i*

in fact, maximizes cost over all such hyperplanes. Theorem 1 shows that it is
sufficient to search in pairwise fashion, maximizing the convex combination of

the current hyperplane with each of the Hj in succession.

The main result is now proved:

Theorem 4, llmn x(n) = x‘.

Proof: From (10) and Theorem 2

0 ¢ 6™y ¢ gr{®*)y ¢ g(r"). (12)

But note that

- (-1) ,(-1) (-1),,
v (N1 .N2NL)* ¢ F

(since then vnr(yj) = 0) thus, from (11),

G(E®) ¢ C(v) ¢ =, (13)
Therefore G(H(n)) is a monotonic, bounded sequence and must have a finite
limit.

Let H be any hyperplane of the form given in Theorem 2, and set
bi =3 aje,. Notice that the function

G(H) = E(cibi)l/z
i

is strictly concave. This follows from

.
2
-c
3/2 if r=3s
2 4(°sbs)
2°G(H) _
abr abs 0 otherwise,

which implies that the matrix of second partial derivatives is negative defin-
ite.

It now follows easily from Theorems 1 and 3 that
(n), _ i
limn G(H) = maxa{G(H)] = G(H). (13)

Since & concave function is being maximized over a convex set there is a

unique maximum (see Avriel, 1976, p. 94), thus

lim H(n) = H‘
n

and the result follows.

The rest of this section is given to the proofs of Theorems 1-3, Tt will
be useful to establish some basic facts concerning convex functions. First of

all, if f is a strictly convex function then, by Taylor's theorem
f(x) - f(y) = (x - y)'Vf(y) + E'Q¢ (14)

(by strict convexity f has first and second partial derivatives). Furthermore

the matrix Q is nonnegative definite so that

...8_
f(x) - f(y) 2 (x - y)'Vi(y). (15)
It also follows from (14) that if z = ax + (1-a)y, where 0 { a {(1, then

£(z) - £f(y) = alx-y) 'V£(y) + 0(a?). (16)

Finally, note that the hyperplane tangent to f(x) at s point c has the
equation

y = f(c) + (x-c)'Vf(c).

If it is required that y = k = f(c) then the plane tangent to the plane

Sk = Sf(c) has the equation

x'Vf(e) = c'Vi(c). (17)
In particular,
i i
x'VC(x) = - 3 X, T, = 23— = - C(x). (18)
2 x
i x i i
i
Define h by
.
H = {x: h'x = 1}, (19)
Then

h =~ (c(x*)7? R (20)

Theorem 1. Suppose that PysPyseessPy @ RY, with Py # pj whenever i # j, and
that f: D = {x: x = 3 Yjpj‘ f >0, 3 Yj =1} Rl is strictly concave. Then

f(z) is a maximum on D if

- 9 -

f(z) > f(z + a(pj - z)) (21)
for any a ¢ [0,1] and for each j =1,2,...,k.
Proof: Using Taylor’s theorem
£(z + alpy - 2)) = £(2) + alp; = 2)'VE(z) + 0(ad). (22)

Combining (21) and (22), and letting a tend to O,

(pj - 2)'Vf(z) €0 (23)

for each j =1,2,...,k. Suppose that uw ¢ D, Since -f is strictly converx,
combining (15) and (23) yields

f(u) - f(z) € (u - 2)'Vf(2)

[ZaS

(2 TPy - z) 'Vf(z)

I~

(5 y

2 74Py - 3 sz)'Vf(z)

|~

3 vy(py - 2 V(D)

|~
o

and the result follows.

Theorem 2. For any set of the form H = {x: J uj‘j'x =1, o >0, 3 uj =1},

G(H) ¢ G(B®).

Proof: Let t be the intersection of H and Sk' Note that C is strictly con-

vex, so that, using (1%5),

- 10 -
6(E") - 6(B) = c(x*) - c(t) » (x° - t)'Ve(e).
Notice that since H is tangent to C at t the equation for H is given by

x'VC(t) = t'VC(t)

so that

oy - (£'9C(t)) Tve(e).

From (18)

t'VC(t) = -C(t) ¢ O.

But notice that

which yields

t'VC(t) € (t'VC(t)) 3 ajaj'x‘

= x*'VC(t).

It follows that

G(H*) - G(H) > (x* - t)'VC(t) > 0.

Two preliminary resnlts are necessary to prove Theorem 3,

The first is
proved in Kokan and Khan (1967).

The second, dume to Kuhn and Tucker (1951),
is one of the fundamental results in nonlinear programming; this version is

slightly restated from Theorem 4.39 of Avriel (1976).

Lemma 1. For some subset J of {1,2,...,p)

(24)

(25)

- 11 -

x’) IJ = {x: aj'x =1, je1J}.

Lemma 2. Suppose that f and 31,32,...,gp are real-valued and differentiable

functions on R®, where f is convex and the g, are concave. Let

J

F={x:g >0,1¢3j<pl).

J

Suppose that there is v e R® such that

!j(v) >0

for § =1,2,...,p. If z satisfies

minF[f(x)} = f(z)

then there exist lj > 0 for which

vf z - E A vg z = 0
and

A =
jgj(z) 0

for j =1,2,...,p.

Theorem 3. There exist a, > 0, with J a

= 1, such that
] 3

J

B° = (x: 3 ajlj'x =1},

3

Proof: Suppose thet

12
H = {x: h'x = 1}.
In Lemma 2 take

(-C(x"))C(x)

f(x)

Sj(x) = —(lj'x -1).

It follows that there exist lj > 0 such that

~c(xHve(x*) + T 2., =0
R

and

kj(.j'x' -1) =0, j=1,2,...p.

Suppose that x‘ ¢ J as in Lemma 1. If j is not in J then

*
ﬂ.j'x -1<C0

which implies that A, = 0. It follows from (20) that

3
h = jzjxj.j.
But if j e J then aj-,' =1, thus
1=n's" = jlej.j'x‘
=jé}j

The result follows by taking

A, if je7J

b
J 0 otherwise.

- 13 -

INPLEMENTING THE ALGORTTHN

As has been shown, the algorithm converges for any starting value H(l),

but, intuitively, it makes sense to maximize C(H(j)), since x(l) should be as
close as possible to F. Thus take

(i)
g(1) _ g o

where

(§g) .
cm 9y y el

for all j. Since

(n)

gla) = 5 (ci(aai + (1-a)a 1/2
i

ji))

is concave in o, a direct search for the maximum on [0,1] can be carried out.

This was accomplished by using a small positive value f and finding

max {g(0),g(B),g(2B),...,8(kB),...,g(1)).

This was done by starting with g(0) and stopping when
g(kB) > g((k+1)p).

This is not as inefficient as it may sppear. Even on problems with many con-
straints, there are usually only two or three which determine the solution:
that is, most of the constraints will not be searched since any value B > O
results in lowering the cost. Also, the value of B which maximizes g is usu-
ally quite small and almost always less than .5. Therefore this searching
method wastes little time searching over unneccessary constraints which are
and does not require many steps to find the optimal B, since this value is

small.

- 14 -

In order for convergence to occur, B must be decremented. This was done

at each iteration., That is, after finding
(n) _ 1/2
max, [E (c,(kpa, " + (1 kB)lji)](26)

where k = 0,1,....[3—1]. for j = 1,2,...,p, and B was decremented and the pro-
cess was repeated until the convergence criterion was satisfied. If B is
decreased too quickly then an excessive amount of time will be spent on the
search to find (26). If it decreases too slowly, too many iterations will be
necessary to obtain convergence. It seemed that initially taking B = .05 and
decreasing it by 10% on each cycle worked well.

The convergence criterion used was the maximum relative constraint viola-
tion. For example, if the required coefficient of variation is y, setting a
convergence criterion of ¢ would mean that all CV’'s must be no larger than

—

1(1+e[.
CONCLUSIONS

The algorithm provides an alternate program to the Agency’s Huddleston,
blaypool and Hocking procedure (1970) to obtain optimum solutions to mul-
tivariate problems. The motivation for the work was to provide a procedure
which could be executed using am in-house micro-computer. There was no direct
effort made to compare this algorithm against any other algorithms, Modest
usoe of the program does indicate it is reasonably efficient. CPU time was 12
seconds for an optimal allocation problem (Bethel, 1985) which compares to
other projects of similar size running at less than 30 seconds CPU time.

It is recommended this program be used by the Agency as an alternative to
optimum sample allocation processing on Martin Marietta. This method is cost
effective because it runs on an in-house machine. The method also converges
quickly. Further research is suggested to evaluate the CPU run time, optimal
solution, and robustness of this algorithm against the standard algorithm
used by the Agency.

._15_

REFERENCES :

Avriel, M. (1976). Nonlinear Programming: Analysis and Methods. Prentice-
Hall, New Jersey.

Bethel, J.W, (1985). Sample Design for the 1985 ISP/JES. SRS-USDA Staff
Report No. 86.

Cochran, W.G. (1977). Sampling Techniques. John Wiley and Sons, New York,

Hartley, H.H,, and Hocking, R.R. (1963)., Convex Programming by Tangential
Approximation. Management Science, 9, 600-612.

Huddleston, H.F., Cleypool, P.L., and Hocking, R.R. (1970). Optimum Sample
Allocation to Strata Using Convex Programming, App. Stat. 19, 273-278,

Kokan, A.R., (1963). Optimum Allocation in Multivariate Surveys. J. R.
Statist. Soc. A, 126, 557-565.

Eokan, A.R., and Khan, S. (1967). Optimum Allocation in Multivariate
Surveys: An Analytical Solution, J. R. Statist. Soc. B, 29, 115-125.

Euhn, H.¥,, and Tucker, A.W. (1951). Nonlinear Programming. Proc.
2nd Berkeley Symp. Mathematical Statistics and Probability.

Williams, R.L. (1986). Sample Designs for Panel Surveys of Agricultural
Production. SRS-USDA Staff Report No. 93,

- 16 -

In this section PASCAL code for implementing the algorithm is given. The
program has three subroutines. The first finds the intersection of a hyper-
plane with the surface Sk: the second finds the largest relative constraint
violation associated with a given allocation; the third finds the cost associ-
ated with the point where Sk and s given hyperplane are tangent. The main
loop first finds the hyperplane with the largest cost, then implements the

routine described in section 2.

program allocat (input, output);

const
sizel = 100;
size2 = 50;
type
vector = arrayll..sizel] of real;
matrix = array(l..sizel] of array[l..size2] of real;
var
x,y,epsilon,error,beta,costl,cost2,lambda : real;
cnst : matrix;
planel,plane2,pointl,point2,cost : vector;
iteration,r,i,j,k,nstrata,nvar : integer;
rank : arrayll..sizel] of integer;

(* *)
(* PROCEDURE INTERSECT takes an integer (which identifies *)
(* a constraint hyperplane) and returns the point of *)
(®* intersection with the cost surface ®)

procedure intersect (plane : vector;
var inter : vector):
var
int : integer;
t : real;
w : vector;

begin
t :=0;
for int := 1 to nstrata do
begin
wlint] := sqrt(cost[int]®planelint]);
t := t + wlint]

- 17 -

end;
for int := 1 to nstrata do
if plane[int] <> O then inter[int] :=
wlint]/(plane[int]*t)
else inter{int] := 1.0E+10
end;

(* -—)
(* PROCEDURE "CHECK” checks to see how near a given point *)
(¢ is to the feasible region. The global variable "error” is *¢)
(* gset to the largest relative constraint violation. *)
procedure check (vec : vector);
var
max,t : real:;
i, § : integer;
begin
max := 0;
(* For each constraint... *)
J =13
while j ¢(= nvar do
begin
t :=0;
(¢ ,..first find a’'x and 1-a’'x/b, which is the error. *)
for 1 :=1 to nstrats do
t :=t + vec[i]®cnst[i,j):
t := t-1;
if t > max then max := t;
(* Now max is the largest absolute constraint violation. *)
J =3 +1;
end;
error := max;
end;
(e~ *)
(®* PROCEDURE "FINDCOST” finds the cost associated with plane p.*)

procedure findcost (p : vector;
var tc : real);

var
count : integer;

begin
tc := 0;

- 18 -

for count := 1 to nstrata do
tc := tc + sqrt(cost{count]®plcount]);
tec := sqr(tc)
end;

*)

(.
(s
(e

(®

(e
(*
(®

(®

(*

(s

(®

(®

(¢

MAIN LOOP, First the iteration variable is ®)
initialized, and then the data is entered.

begin
iteration := (;

writeln ('Enter number of strata, number’);
writeln ('of variables, and epsilon: ’');
read (nstrata,nvar,epsilon);

First the cost data for each stratum is entered.

for i := 1 to nstrata do
read (costf{i]):

Now the "variance components” are read. *)
These are the a(i,j) in formula (2).)
These are read by variable, with a row for each one. *)

for j := 1 to avar do
begin
for 1 := 1 to nstrata do
read (cnst[i,]jl1)
end;

The first step is to find the hyperplane with the maximum
value G(H) (ie., largest cost).

for § := 1 to nvar do
begin
for 1 := 1 to nstrata do
plane2[i] := cnst[i,3j);

Note that j indicates the constraint hyperplane and
"plane2” is the associated plane. The first step records
the cost of the first plane:

findcost (plane2,costl);
if j =1 then
begin
r :=1;
x := costl
end

Now any plane with higher cost replaces the previous one.

else

*)

*)

*)
*)

)
*)
*)

*)

- 19 -

if costl > x then
begin
x := costl;
r = j;
end;
end;

(¢ The following sets the initial values for the loop: *)

costl := x;

for 1 := 1 to nstrata do
planel[i] := ecnstli,r]);

intersect (planel,pointl);

check (pointl);

(* The iteration begins here. The procedure is to tilt *)
(* planel toward each constraint-plane in succession, each *)
(* time choosing the angle which maximizes the cost ®)
(* associated with the plane. Beta is a parameter which s)
(¢ dotermines the grid of the line seach for the optimum e)
(* angle. As the iterations increase, bets is decressed. *)

beta := 0,056

while error > epsilon do
begin
iteration := iteration + 1;
beta := 0.9%beta;
for j := 1 to avar do
begin
x :=0;
repeat
y := costl;
x := x + beta;
for { := 1 to nstrata do
plane2[i] := x®cnst[i,jl+(1-x)®planelli];
findcost (plane2,cost2);
if cost2 > costl then costl := cost2;
ontil cost2 (= y;
if x > beta then
begin
x :=x - beta;
for i :=1 to nstrata do
planel[1] := x®cnst[i,j)l+(1-x)*planelli];
end;
end;
if iteration) 25 then writeln ('Warning: iteration =',iteration);
intersect (planel,pointl);
check (pointl);

end;

(* We are finished! All that remains is to tidy things up a *)
(* 1little and then report the results. *)

- 20 -

writeln (' ')
writeln ('Program output: '):
writeln ('’ ')
x :=0;
for 1 := 1 to nstrats do
begin

rank[i] := round(1l/pointi[i]));
x := x + cost{i]*rank[i];
end;
writeln ('Number of iterations =',iteration);
writeln ('The optimal ocost is’,costl);
writeln ('This solution satisfies the CV constraints to within’,error);
writeln (’An approximately optimal solution is the allocation’);
for i := 1 to nstrata do
write (rank(il);
writeln;
writeln ('The cost of this soluntion is',x);

end.

7rU.8. GOVERNMENT PRINTING OFFICE: 1986 -4930~920/40037

	page1
	page2
	titles
	-------------------------.-- ----.----------------------------
	-------------.---------.------------------.-.---------------.-------

	page3
	titles
	2
	...
	...

	page4
	page5
	titles
	nmwDUCTION
	...!..

	images
	image1
	image2
	image3

	page6
	titles
	1 i j i p
	L
	1 i i i L.

	images
	image1
	image2
	image3
	image4
	image5
	image6

	page7
	images
	image1
	image2

	tables
	table1

	page8
	titles
	- 4 -
	() (d (2)

	images
	image1
	image2

	page9
	titles
	- s -
	•
	•
	•

	images
	image1

	page10
	titles
	•

	images
	image1
	image2
	image3

	page11
	titles
	o

	images
	image1
	image2

	page12
	titles
	(19)
	. -1[c1
	.'
	.' ... '
	(20)

	images
	image1
	image2
	image3

	page13
	titles
	i 0
	•

	images
	image1
	image2
	image3
	image4

	page14
	titles
	•••
	1 L ~

	images
	image1
	image2

	page15
	titles
	•

	images
	image1
	image2
	image3
	image4
	image5
	image6

	page16
	titles
	•
	v =
	•
	•
	•
	.., ~ A

	images
	image1
	image2
	image3
	image4
	image5

	page17
	images
	image1
	image2
	image3
	image4

	page18
	titles
	-1

	images
	image1

	page19
	page20
	titles
	(.----------------------.------------.)

	images
	image1

	page21
	titles
	(.----------------------.-----------------.--.)
	j : - 1:
	.)
	.)
	(.---.)

	tables
	table1

	page22
	titles
	(.--.-.-,----------------------------------.)

	page23
	titles
	.nd;

	page24

